Zagazig University- Banha Branch
Faculty of Engineering- Shoubra
Nat. and Math. Sci. Department
$2^{\text {nd }}$ Year: Civil Engineering Mathematics
Date: 14/1/ 2003

Answer the following questions: Time: 3 Hours
1 Solve the following P.D.E:
(a) $3 u_{x}+4 u_{y}-5 u=25 y$
(b) $3 u_{\mathrm{xx}}-4 \mathrm{u}_{\mathrm{xy}}+\mathrm{u}_{\mathrm{yy}}+\mathrm{u}_{\mathrm{x}}+\mathrm{u}_{\mathrm{y}}-12 \mathrm{u}=0$
(c) $\mathrm{u}_{\mathrm{tt}}-4 \mathrm{u}_{\mathrm{xx}}=0, \quad 0<\mathrm{x}<1$
B.C $u(0, t)=u(1, t)=0$
I.C $u(x, 0)=x-1, u_{t}(x, 0)=x+1$.

2 Solve the LP problems:
(a)Minimize $\mathrm{f}=\mathrm{x}-\mathrm{y}-\mathrm{z}+5$
(b)Maximize $\mathrm{f}=\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}$

$$
\begin{gathered}
\text { s.t } \quad 2 \mathrm{x}-\mathrm{y}+\mathrm{z} \leq 4 \\
\mathrm{x}+2 \mathrm{y}+2 \mathrm{z} \leq 10 \\
-\mathrm{x}+\mathrm{y}-\mathrm{z} \leq 8 \\
\mathrm{x}, \mathrm{y}, \mathrm{z} \geq 0 .
\end{gathered}
$$

s.t $\quad x+y+z \leq 18$ $2 x+3 y-z \geq 16$ $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z} \geq 12$
$X, y, z \geq 0$.

3 (a)Find the exponential curve that fits the points: $(1,2),(2,3),(3,2.5),(4,3.8),(5,6)$.
(b)Evaluate the integral: $\int_{1}^{\infty} \frac{\mathrm{e}^{1 / \mathrm{x}}}{\mathrm{x}^{2}+1} \mathrm{dx}$ by Simpson's rule, $\Delta=0.1$

4 (a)Solve the system of equations, number of iterations is 3:

$$
\left[\begin{array}{cccc}
2 & -1 & 2 & -1 \\
1 & 2 & -1 & -1 \\
1 & -2 & 2 & 1 \\
1 & 1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
7 \\
8
\end{array}\right]
$$

(b) Find a root to the equation $f(x)=x^{4}-x-1=0$ in [1,2], using the bisection method and number of iterations is 5 .
5 (a)Find u and v of the function $f(z)=\sin z \cos z$ and show that they satisfy Riemman equations.
(b)Find the sum of the series: $1+\cos \theta+\cos 2 \theta+\ldots$
(c)Evaluate the following integrals:
(i) $\int_{\mathrm{C}} \frac{\ln (2 z+15)}{\mathrm{z}^{2}-36} d z$
(ii) $\int_{C} \frac{\mathrm{ze}^{\mathrm{z}}}{\mathrm{z}+\pi \mathrm{i}} \mathrm{d} \mathrm{z}$
(iii) $\int_{C} \frac{\mathrm{ze}^{\mathrm{z}}}{(\mathrm{z}-1)^{2}} \mathrm{dz}$
where C is the ellipse $|\mathrm{z}-3|+|\mathrm{z}+3|=10$.
Good Luck
Dr. M.H. Eid

Zagazig University- Banha Branch
Faculty of Engineering- Shoubra
Nat. and Math. Sci. Department
$2^{\text {nd }}$ Year: Civil Engineering Mathematics

3 (a)Find the least squares line that fits the points:
$(0,0),(1,2),(2,3),(3,5),(4,8),(5,9)$.
(b)Find the value of y at $x=2$ from the data:
$(1,3),(3,6),(5,12),(7,15)$.
4 (a)Evaluate the integral: $\int_{1}^{3} \frac{\ln (x+2)}{x+1} d x$ by Simpson's rule, $\Delta=0.25$
(b)Find the Lagrange's polynomial that satisfies the data: $(0,1),(1,2),(2,7),(3,22)$.
5 (a)Show that the function $u(x, y)=2 x y+2 y$ is harmonic and find its conjugate $\mathrm{v}(\mathrm{x}, \mathrm{y})$ such that the function $\mathrm{w}=\mathrm{u}+\mathrm{iv}$ is analytic.
(b)Evaluate the following integrals:
(i) $\int_{C} \frac{z e^{z}}{z+6} d z$
(ii) $\int_{C} \frac{\ln (2 z+11)}{z-3} d z$
(iii) $\int_{C} \frac{e^{-3 z}}{z^{3}} d z$
where C is the circle $|\mathrm{z}-1|=4$.

